解:設x(x + y + z) = 30 - yz ------ ➀
y(x + y + z) = 35 - zx ------ ➁
z(x + y + z) = 42 - xy ------ ➂
➀ - ➁ 得(x + y + z)(x - y)= -5 + z(x - y) => (x + y)(x - y) = -5 ------➃
由➀ x² + xy + yz + zx = 30 => x(x + y) + z(x + y) = 30 => (x + y)(x + z) = 30
同理由➁➂ (x + y)(y + z) = 35 ,(y + z)(x + z) = 42 ,可得 x + y = 5 或-5,y + z = 7 或 -7
<1> x + y = 5 由➃ 得 x - y = -1 => x = 2,y = 3 代入 y + z = 7,z = 4
<2> x + y = -5由➃ 得 x - y = 1 => x = -2, y = -3 代入 y + z = -7,z = -4
由<1><2> ( x , y , z ) = ( 2 , 3 , 4 ) 或 ( -2 , -3 , -4 )
沒有留言:
張貼留言