解:(3n + 3)(3n + 4) - (9n² + 5n + 26) = 9n² + 21n + 12 - 9n² - 5n - 26 = 16n - 14 > 0 ( 因 n ≥ 1 )
所以 (3n + 3)(3n + 4) > (9n² + 5n + 26)
9n² + 5n + 26 - 3n (3n + 1) = 9n² + 5n + 26 - 9n² -3n = 2n + 26 > 0
綜合以上 (3n + 3)(3n + 4) > (9n² + 5n + 26) > 3n (3n + 1)
因為 9n² + 5n + 26 的值是兩相鄰自然數之乘積
9n² + 5n + 26 = (3n + 1)(3n + 2) 或 (3n + 2)(3n + 3)
<1> 9n² + 5n + 26 = (3n + 1)(3n + 2) => 9n² + 5n + 26 = 9n² + 9n + 2 => 24 = 4n => n = 6
<2>9n² + 5n + 26 = (3n + 2)(3n + 3) => 9n² + 5n + 26 = 9n² + 15n + 6 => 20 = 10n => n = 2
由<1><2>得 n 之最大值為 6
沒有留言:
張貼留言